Properties of Morse Forms that Determine Compact Foliations on M_q^2

I. A. Mel'nikova

KEY WORDS: two-dimensional manifold, foliation, Morse form, integration over cycles.

In [1, 2] P. Arnoux and G. Levitt showed that the topology of the foliation of a Morse form ω on a compact manifold is closely related to the structure of the integration mapping $[\omega]: H_1(M) \to \mathbb{R}$. In this paper we consider the foliation of a Morse form on a two-dimensional manifold M_g^2 . We study the relationship of the subgroup $\operatorname{Ker}[\omega] \subset H_1(M_g^2)$ with the topology of the foliation. We consider the structure of the subgroup $\operatorname{Ker}[\omega]$ for a compact foliation and prove a criterion for the compactness of a foliation.

§1. Preliminary definitions

Consider a closed form ω with Morse singularities on M_g^2 . This form determines a foliation \mathcal{F} on $M_g^2 \setminus \operatorname{Sing} \omega$.

Let us define a foliation with singularities \mathcal{F}_{ω} on M_{q}^{2} as follows.

Suppose that the foliation \mathcal{F} is locally (in a sufficiently small neighborhood of a singular point $p \in \text{Sing } \omega$) determined by the levels of a function f_p such that $f_p(p) = 0$.

Definition 1. A nonsingular leaf of a foliation \mathcal{F}_{ω} is a leaf $\gamma \in \mathcal{F}$ such that $\gamma \cap f_p^{-1}(0) = \emptyset$ for all $p \in \operatorname{Sing} \omega$.

Put $F_p = p \cup \{ \gamma \in \mathcal{F} \mid \gamma \cap f_p^{-1}(0) \neq \emptyset \}$. Also put $F = \bigcup_{p \in \operatorname{Sing} \omega} F_p$.

Definition 2. A singular leaf of a foliation \mathcal{F}_{ω} is a connected component of F.

There is only a finite number of singular leaves (because the form is Morse).

A foliation \mathcal{F}_{ω} is called *compact* if all its leaves are compact.

A closed form ω determines the mapping $[\omega]: H_1(M_g^2) \to \mathbb{R}$ (integration over cycles). The image of this mapping $\operatorname{Im}[\omega]$ represents the period group of the form ω . Note that $\operatorname{rk}\operatorname{Im}[\omega] = \operatorname{dirr}\omega + 1$, where dirr ω is the degree of irrationality of the form ω .

If dirr $\omega \leq 0$, then the foliation \mathcal{F}_{ω} is compact [3]. If dirr $\omega \geq g$, then the foliation \mathcal{F}_{ω} has a noncompact leaf [4]. If $0 < \operatorname{dirr} \omega < g$, then the foliation can be compact as well as noncompact. The study of the subgroup Ker $[\omega]$ yields a condition for the compactness of a foliation in the latter case also.

Consider the intersection operation of 1-cycles

$$\varphi \colon H_1(M_q^2) \times H_1(M_q^2) \to \mathbb{Z}.$$

This operation is a nondegenerate skew-symmetric bilinear mapping.

By φ_{ω} denote the restriction of the mapping φ to the subgroup $\operatorname{Ker}[\omega] \subset H_1(M_{\sigma}^2)$:

$$\varphi_{\omega} \colon \operatorname{Ker}[\omega] \times \operatorname{Ker}[\omega] \to \mathbb{Z}.$$

Obviously, $\operatorname{rk}\operatorname{Ker}\varphi_{\omega} \leq \operatorname{rk}\operatorname{Ker}[\omega] = 2g - (\operatorname{dirr}\omega + 1)$. For small values of $\operatorname{dirr}\omega$ a sharper estimate exists.

Proposition 1. rk Ker $\varphi_{\omega} \leq \operatorname{dirr} \omega + 1$.

Translated from Matematicheskie Zametki, Vol. 60, No. 6, pp. 942-945, December, 1996.

Original article submitted June 18, 1996.